原子力施設のさらなる安全性向上に向けた対策

原子力発電所のさらなる安全性向上対策

【重大事故の対策拠点を整備】

緊急時における指揮所の機能を確保するため、現地 対策本部の機能を維持する緊急時対策所が整備され ています。

【テロ対策】

故意の航空機衝突などのテロを想定し、大規模な損 壊で広範囲に設備が使えない事態でも原子炉を安全に 停止する対策がとられています。そのために、原子炉格 納容器への注水機能や電源設備、通信連絡設備などに 加え、さらなるバックアップとして可搬型設備が備えられて います。また、これらの設備を制御する緊急時制御室を備 えた既存の中央制御室を代替する特定重大事故等対 処施設が設置されています。

これに加えて、原子力発電所では、海水冷却ポンプなど 屋外にある重要な設備に強固な障壁を設け、その周囲に フェンスや侵入検知器を設置する対策や、重要な区域で の常時監視として二人以上で行うとする対策などのほか、 作業員の身元を確認する制度が実施されています。

■テロを想定した対策

緊急時対策所(外観)

また、福島第一原子力発電所の事故を教訓に、非常用 の電源設備や冷却設備を互いに離れた別の場所に分散 して配置されています。このこともテロによる安全設備の一 斉破壊を防ぐことにつながります。

警察は、銃器や防弾仕様の警備車を備えた部隊によ って原子力施設を24時間体制で警戒し、万が一、テロが 起こった場合には、高度な制圧能力をもつ特殊部隊を投 入できる体制が整えられています。そのほか、海上保安庁 でもアメリカでの同時多発テロ以降、全国17か所すべて の原子力発電所を対象に巡視船を配備して警備が実 施されています。日頃からの緊密な連携に加えて、テロ発 生時に的確に対応できるよう、警察や海上保安庁、自衛 隊などの関係機関では共同訓練も行われています。

原子力施設を狙うテロの防止とともに、核物質を使うテ ロの防止も国際的に重要な課題となっています。2016年 4月1日に50か国以上の首脳級が参加して開かれた「核 セキュリティ・サミット |では、核物質がテロリストに渡らない よう国際社会が管理を強化するという共同宣言が採択さ れ、テロリストに関する情報の共有を進めるなどの行動計 画が示されました。

また、同年4月8日には、152か国で結んでいる「核物 質防護条約 |を改正することが決まり、5月8日に発効し ました。この改正によって締約国には、国内の核物質や 原子力関連施設をテロリストなどから防護する対策をとる ことが義務づけられるほか、核物質を許可なく運ぶことが 禁止されるようになりました。

出典:電気事業連合会「原子カコンセンサス」より作成

可搬型のポンプや電源を分散して配置 特定重大事故等対処施設は、原子炉建屋と同時に破損す ることを防ぐため、必要な離隔距離(例えば100m以上)を 確保することになっています。 緊急時制御室 実際に冷却作業ができるように ●マニュアルの整備 ●訓練の実施 可搬型ポンスによる給水 格納容器 電源 スプレイポンプ 格納容器下部への フィルタ・ベント 特定重大事故等対処施設 概念 可搬設備のバックアップとなる恒設設備

2. 緊急時の体制の整備・強化

各原子力発電所では、ハード面の対策に加え、事故が 起きた場合でも整備された対策が有効に機能するよう、事 業者はマニュアルを整備し、定期的な教育・訓練の実施な どを通じ、緊急時に確実な対応を行うためのソフト面の対 策も行われています。

【主な訓練内容】

·緊急時诵報·連絡訓練

情報共有しながら、国や自治体へ通報・連絡する訓練

•代替給水訓練

水源と建屋壁面の給水接続口までをホースでつなぎ、可 搬型の送水ポンプ車と注水ポンプ車を使って原子炉の中 に水を送り込むことを想定した訓練

総合訓練(緊急時対策所での対応)

•代替給雷訓練

交流電源を失った場合を想定し、常設の代替非常用 発電機や非常用ディーゼル発電機、可搬型代替電源車を 起動し、受電設備へ接続する訓練

·事故時操作訓練

事故時の状況を運転訓練シミュレータ室に再現し、限ら れた照明のもと、運転員が急速に進展する事故の事態に 的確に対応する訓練

放射性物質放出の抑制訓練

原子炉格納容器が破損した場合を想定し、原子力発 電所の外部への放射性物質の放出を抑制するための訓練

・ガレキ撤去訓練

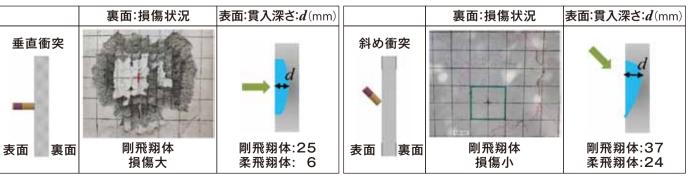
津波などにより発電所内にガレキが散乱したことを想定し、 人や車の通路を確保するために重機でガレキを撤去する訓練

運転訓練シミュレータ

写真提供:四国電力(株

◆原子力施設の安全性に関する研究◆

原子力施設の安全に関する研究の中でも、航空機などの 実物航空機 (F-4ファントム) を用いた衝撃実験 飛翔体衝突に関する原子力施設への影響評価研究が行わ


れています。 1987年と1988年に米国サンディア国立研究所において、 鉄筋コンクリート壁へ戦闘機が衝突した場合の建物への影 響を評価するため、実物のエンジンや戦闘機を使った衝突実 験が行われ、原子力施設と同等の厚さの鉄筋コンクリートで

現在は「日本原子力研究開発機構 | にて、より現実的な衝 突条件となる斜めからの衝突などや、原子力施設内の機器 への影響評価などの研究が行われています。

は、貫通などの結果は認められませんでした。

写真提供:米国サンディア国立研究所

(衝突速度:207m/s:衝突角度:0°)

(衝突速度:202m/s;衝突角度:45°)

出典:日本原子力研究開発機構資料より